

Inhalt

1.	Allgemeine Informationen	2
2.	Chemische Zusammensetzung	2
3.	Physikalische Eigenschaften	2
3.1	Dichte	
3.2	Solidus- und Liquidustemperatur	2
3.3	Längenausdehnungskoeffizient	2
3.4	Spezifische Wärmekapazität	2
3.5	Wärmeleitfähigkeit	2
3.6	Spezifische elektrische Leitfähigkeit	3
3.7	Spezifischer elektrischer Widerstand	3
3.8	Temperaturkoeffizient des elektr. Widerstands	3
3.9	Elastizitätsmodul	4
3.10	Spezifische magnetische Suszeptibilität	4
3.11	Kristallstruktur / Gefüge	4
4.	Mechanische Eigenschaften	4
4.1	Festigkeitswerte bei Raumtemperatur	
4.2	Tieftemperaturverhalten	7
4.3	Hochtemperaturverhalten	8
4.4	Dauerschwingfestigkeit	8
4.5	Federeigenschaften	8
4.6	Verhalten nach Wärmebehandlung	9
5.	Relevante Normen	10
6.	Werkstoffbezeichnungen	11

Bearbeitbarkeit	11
Umformen und Glühen	
Spanbarkeit	11
Verbindungstechniken	11
Oberflächenbehandlung	
Korrosionsbeständigkeit	12
Anwendungen	12
Liefernachweis	12
Literatur	12
Index	13

Stand 2005

Hinweis:

7. 7.1 7.2 7.3 7.4

8.

9.

10.

11.

12.

Durch Klicken auf die Überschriften können Sie direkt zu den entsprechenden Inhalten springen.

1. Allgemeine Informationen

Werkstoff-Bezeichnung: CuNi1Si

Werkstoff-Nr.:

CW109C

CuNi1Si ist eine aushärtbare Legierung, die sich durch hohe Festigkeit, den hohen Verschleißwiderstand sowie hohe Dauer- und Zeitstandfestigkeit auszeichnet. Diese Legierung besitzt neben einer guten Warmfestigkeit eine gute Relaxationsbeständigkeit und eine mittlere Leitfähigkeit. Darüber hinaus weist CuNi1Si eine hohe Korrosionsbeständigkeit und gute Gleiteigenschaften auf. Sie wird insbesondere in der Druckguss-, Schweiß-, Elektro- und Gleitlagertechnik sowie im Apparatebau u.a. als Freileitungsmaterial (Muttern, Schrauben), für Steckverbinder, Kontakte, Drahtseile, Lagerbuchsen und Federn verwendet [1, 2].

2. Chemische Zusammensetzung - nach DIN CEN/TS 13388 -

Legierungsbestandteile			
Massenanteil in %			
Cu Ni Si			
Rest	1,0 bis 1,6	0,4 bis 0,7	

Zulässige Beimengungen bis				
Massenanteil in %				
Fe Mn Pb Sonstige zusammen				
0,2	0,1	0,02	0,3	

3. Physikalische Eigenschaften

3.1 Dichte

Temperatur	Dichte
°C	g/cm³
20	8,9

3.2 Solidus- und Liquidustemperatur

Solidustemperatur	Liquidustemperatur
°C	°C
1050	1070

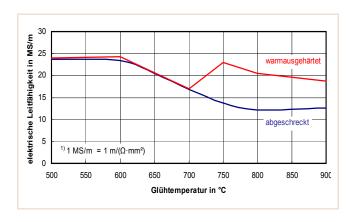
3.3 Längenausdehnungskoeffizient

Temperatur	Längenausdehnungs- koeffizient
°C	10 ⁻⁶ ⋅K ⁻¹
von 20 bis 300	16,8

3.4 Spezifische Wärmekapazität

Temperatur	Spezifische Wärmekapazität
°C	J/(g⋅K)
20	0,377

3.5 Wärmeleitfähigkeit

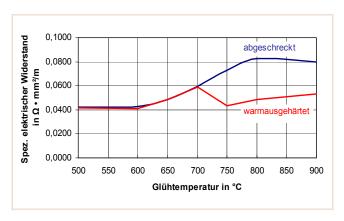

Temperatur	Wärmeleitfähigkeit	Zustand
°C	W/(m·K)	
20	85	lösungsgeglüht
20	150 bis 250	ausgehärtet

3.6 Spezifische elektrische Leitfähigkeit

Die elektrische Leitfähigkeit einer Legierung mit einer vergleichbaren Zusammensetzung ist in Abhängigkeit von der Glühtemperatur bekannt [3]. Werte unterschiedlicher Zustände sind nachstehend angegeben und als Diagramm dargestellt.

Glühtemperatur	Spez. elektr. Leitfähigkeit	Zustand
°C	MS/m	
500	23,77	Nach 10 h Glühung
600	23,44	bei 750 °C und Ofen-
700	16,81	abkühlung werden die Proben ½ h bei
800	12,09	der angegebenen
900	12,54	Temperatur erneut geglüht und in Wasser abgeschreckt.
500 + A 1)	24,00	Wie oben abge-
600 + A	24,32	schreckte Proben
700 + A	17,01	werden anschließend 1½ h bei 470 °C warmausgehärtet (angelassen).
800 + A	20,48	
900 + A	18,72	

¹⁾ A = 470 °C Aushärtung. Anmerkung: 1 MS/m entspricht 1 m/(Ω·mm²).

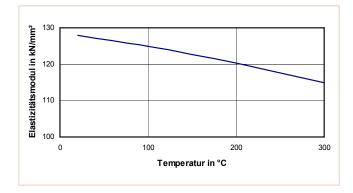


3.7 Spezifischer elektrischer Widerstand

Die aus den oberen Leitfähigkeiten berechneten Werte des elektrischen Widerstands werden im Folgendem dargestellt.

Glühtemperatur	Spez. elektr. Widerstand	Zustand
°C	(Ω·mm²)/m	
500	0,0421	Nach 10 h Glühung
600	0,0427	bei 750 °C und Ofen-
700	0,0595	abkühlung werden
800	0,0827	die Proben ½ h bei der angegebenen Temperatur erneut geglüht und in Wasser abgeschreckt.
900	0,0797	
500 + A ¹⁾	0,0417	J
600 + A	0,0411	Wie oben abge- schreckte Proben
700 + A	0,0588	werden anschließend 1½ h bei 470°C warmausgehärtet
800 + A	0,0488	
900 + A	0,0534	
		(angelassen).

1) A = 470 °C Aushärtung.


3.8 Temperaturkoeffizient des elektr. Widerstands

Temperatur	Temperatur- koeffizient des elektr. Widerstands	Zustand
°C	K ⁻¹	
20	0,0020	ausscheidungs- gehärtet

Gültig von 0 bis 100 °C.

3.9 Elastizitätsmodul

Temperatur	Elastizitätsmodul	Zustand
°C	kN/mm²	
20	140-155	ausscheidungs- gehärtet
20	128	
100	124	lösungsgeglüht
200	120	iosuligsgegiulit
300	115	

Anmerkung: 1 kN/mm² entspricht 1 GPa.

3.10 Spezifische magnetische Suszeptibilität - bei 20 °C -

CuNi1Si weist keinen Ferromagnetismus auf, da Nickel in Form von Nickelsilizid abgebunden ist. CuNi1Si ist vielmehr diamagnetisch bzw. paramagnetisch, wenn Ni-Gehalte niedrig sind und kein Eisen enthalten ist. Die Volumensuszeptibilität beträgt ca. 6 · 10⁻⁷.

3.11 Kristallstruktur / Gefüge

CuNi1Si weist im lösungsgeglühten Zustand (zu erreichen durch Abschrecken von Temperaturen oberhalb der Löslichkeitslinie) ein an Ni₂Si übersättigtes α-Gefüge auf und kristallisiert in einem kubisch-flächenzentrierten Gitter. Die Aushärtungsfähigkeit beruht auf der von der Temperatur abhängigen Löslichkeit der intermetallischen Verbindung Ni₂Si (Nickelsilizid) in der Kupfermatrix. Durch Warmaushärtung unterhalb der Löslichkeitslinie scheidet sich Ni₂Si aus, dadurch können gewünschte mechanische und physikalische Werte eingestellt werden.

4. Mechanische Eigenschaften

Bei CuNi1Si lassen sich höhere Festigkeitswerte durch Kaltumformung und vor allem aufgrund einer ausgeprägten Aushärtbarkeit durch Wärmebehandlung erreichen.

4.1 Festigkeitswerte bei Raumtemperatur

4.1.1 Platten, Bleche, Bänder, Streifen und Ronden

Platten, Bleche, Bänder, Streifen und Ronden aus CuNi1Si sind in DIN EN nicht genormt. Festigkeitseigenschaften für Bänder sind für den kalt gewalzten und ausscheidungsgehärteten Zustand mit dem Hersteller zu vereinbaren.

4.1.2 Rohre

Rohre aus CuNi1Si sind in DIN EN nicht genormt.

4.1.3 Stangen zur allgemeinen Verwendung - nach DIN EN 12163 -

Zustand		r chmesser (c hlüsselwe i (Nennmaß)	ite	Zug- festig- keit	0,2 %- Dehn- grenze	Bru	ıchdehnur	ıg ¹⁾		Hä	irte	
				R _m	R _{p0,2}	A _{100mm}	A _{11,3}	A	H	IB .	H	IV
		mm		N/mm ²	N/mm ²	%	%	%				
	von	über	bis	min.	ca.	min.	min.	min.	min.	max.	min.	max.
М	2	-	80				1	wie gefertig	t			
R240 ²⁾	2	-	80	240	(90)	25	30	35	-	-	-	-
H050 ²⁾	2	-	80	-	-	-	-	-	50	75	55	80
R410 3)	2	-	30	410	(320)	5	7	9	-	-	-	-
H105 3)	2	-	25	-	-	-	-	-	105	150	110	155
R350 3)	-	30	50	350	(280)	-	-	12	-	-	-	-
H095 3)	-	30	50	-	-	-	-	-	95	140	100	145
R300 3)	-	50	80	300	(210)	-	-	16	-	-	-	-
H085 3)	-	50	80	-	-	-	-	-	85	130	90	135
R440 4)	2	-	80	440	(320)	12	15	17	-	-	-	-
H120 ⁴⁾	2	-	80	-	-	-	-	-	120	170	125	175
R590 5)	2	-	30	590	(570)	8	10	12	-	-	-	-
H160 5)	2	-	30	-	-	-	-	-	160	-	170	-
R540 5)	-	30	50	540	(450)	-	-	10	-	-	-	-
H140 5)	-	30	50	-	-	-	-	-	140	-	145	-
R500 5)	-	50	80	500	(420)	-	-	10	-	-	-	-
H125 5)	-	50	80	-	-	-	-	-	125	-	130	-

¹⁾ Die Proben müssen DIN EN 10002–1 entsprechen, außer dass eine Messlänge von 200 mm nicht zulässig ist.
²⁾ Lösungsgeglüht.
³⁾ Lösungsgeglüht und kalt umgeformt.
⁴⁾ Lösungsgeglüht und ausscheidungsgehärtet.
⁵⁾ Lösungsgeglüht, kalt umgeformt und ausscheidungsgehärtet.
Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.

Anmerkung 2: 1 N/mm² entspricht 1 MPa.

4.1.4 Profile und Rechteckstangen zur allgemeinen Verwendung - nach DIN EN 12167 -

Zustand	Profile ¹⁾	Querschnittsmaß (Nennmaß) Profile ¹⁾ Rechteckstangen		Zug- festigkeit	0,2 %- Dehngrenze	Bruch- dehnung	Hä	rte
	Profile -/						шр	IIV
		Dio		R _m	R _{p0,2}	Α	НВ	HV
			m	N/mm²	N/mm²	%		
		über	bis	min.	ca.	ca.	min.	min.
М	alle Maße	alle I	Maße			wie gefertigt		
R250 ²⁾	-	3	60	250	(100)	(35)	-	-
H060 ²⁾	-	3	60	-	-	-	60	65
R380 3)	-	3	60	380	(250)	(8)	-	-
H110 3)	-	3	60	-	-	-	110	115
R420 ⁴⁾	-	3	30	420	(260)	(15)	-	-
H120 ⁴⁾	-	3	30	-	-	-	120	125
R560 5)	-	3	30	560	(520)	(10)	-	-
H170 ⁵⁾	-	3	30	-	-	-	170	180

^ŋ Die mechanischen Eigenschaften der Profile sind von der Form und den Maßen des Profils abhängig und zwischen Käufer und Lieferer zu vereinbaren.

Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.

Anmerkung 2: 1 N/mm² entspricht 1 MPa.

4.1.5 Drähte zur allgemeinen Verwendung - nach DIN EN 12166 -

Zustand ¹⁾		Ourchmesser (Nennmaß)	2)	Zugfes	tigkeit	0,2 %- Dehn- grenze	Br	uchdehnun	g ³⁾	Hä	rte
				R	l _m	$R_{p0,2}$	A _{100mm}	A _{11,3}	Α	Н	IV
				N/n	nm²	N/mm ²	%	%	%		
	von	über	bis	min.	max.	ca.	min.	min.	min.	min.	max.
M		alle Maße					wie ge	efertigt			
R450 ⁴⁾	1,5	-	6,0	450	-	(440)	5	6	-	-	-
H135 ⁴⁾	1,5	-	6,0	-	-	-	-	-	-	135	175
R410 4)	-	6,0	15,0	410	-	(400)	-	6	8	-	-
H120 ⁴⁾	-	6,0	15,0	-	-	-	-	-	-	120	160
R650 5)	1,5	-	6,0	650	-	(620)	7	8	-	-	-
H190 ⁵⁾	1,5	-	6,0	-	-	-	-	-	-	190	240
R590 ⁵⁾	-	6,0	15,0	590	-	(580)	7	8	10	-	-
H170 ⁵⁾	-	6,0	15,0	-	-	-	-	-	-	170	220

¹⁾ Wurden die festgelegten mechanischen Eigenschaften durch eine andere Fertigungsweise als die hier angegebene erreicht, ist dies anzuzeigen.

Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.

Anmerkung 2: 1 N/mm² entspricht 1 MPa.

²⁾ Lösungsgeglüht.

³⁾ Lösungsgeglüht und kalt umgeformt.

⁴⁾ Lösungsgeglüht und ausscheidungsgehärtet.

⁵⁾ Lösungsgeglüht, kalt umgeformt und ausscheidungsgehärtet.

²⁾ Oder gleich große Querschnittsfläche für vielkantige Drähte.

³⁾ Ursprüngliche Messlängen, die den Anforderungen an die Dehnung zugrunde liegen, betragen für Drähte je nach Durchmesser (oder vielkantige Drähte mit gleichem Querschnitt) 100 mm (0,5 mm $\leq \emptyset < 4$ mm), 11,3 VS_0 (4 mm $\leq \emptyset \leq 8$ mm) bzw. 5,65 VS_0 ($\emptyset > 8$ mm), wobei S_0 die Ausgangsquerschnittsfläche des Drahtes in mm² ist.

⁴⁾ Lösungsgeglüht und kalt umgeformt.

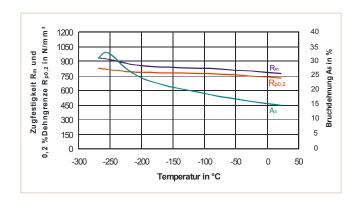
⁵⁾ Lösungsgeglüht, kalt umgeformt, ausscheidungsgehärtet und kalt umgeformt.

4.1.6 Schmiedestücke

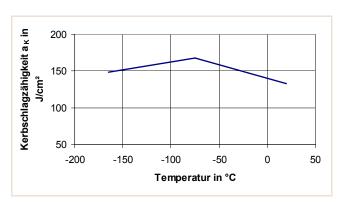
Schmiedestücke aus CuNi1Si sind in DIN EN 12420 genormt. Allerdings enthält diese Norm keine Angaben über die mechanischen Eigenschaften dieses Werkstoffes (Kategorie B).

4.1.7 Vormaterial für Schmiedestücke - nach DIN EN 12165 -

Zustand	od Querschnittsmaße ¹⁾ (Nennmaß)			Zug- festigkeit	0,2 %- Dehngrenze	Bruch- dehnung	Hä	rte	
	Durchn	nesser	Schlüsse	elweite	R _m	R _{p0,2}	A	НВ	HV
	mr	n	m	m	N/mm²	N/mm ²	%		
	von	bis	von	bis	min.	max.	min.	min.	min.
M		alle I	Maße				wie gefertigt		
H050 ²⁾	6	80	6	60	(300)	(200)	(20)	50	50
H120 ³⁾	6	80	6	60	(440)	(300)	(15)	120	125


¹⁾ Andere Formen als mit rundem oder regelmäßig vieleckigem Querschnitt müssen im Zustand M geliefert werden.

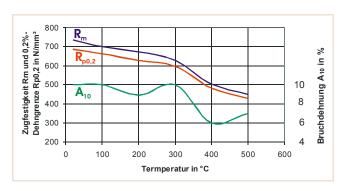
Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.


Anmerkung 2: 1 N/mm² entspricht 1 MPa.

4.2 Tieftemperaturverhalten

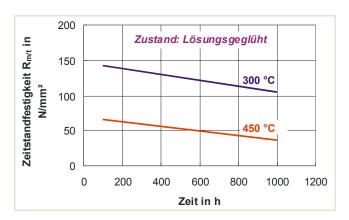
Bekannt sind Werte der Zugfestigkeit, der 0,2 %-Dehngrenze und der Bruchdehnung [4] einer Legierung mit vergleichbarer Zusammensetzung (Stangenmaterial, 2 h bei 450 °C ausgehärtet), sie wurden im folgenden Diagramm dargestellt.

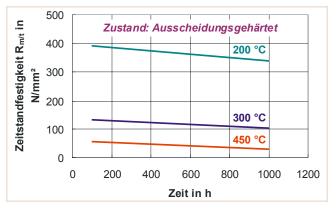
Bekannt ist außerdem die Temperaturabhängigkeit der Kerbschlagzähigkeit einer vergleichbaren Legierung [5]. Sie wurde im unteren Diagramm wiedergegeben.


²⁾ Diese Eigenschaften gelten für den Zustand "wie geliefert", nicht ausgehärtet.

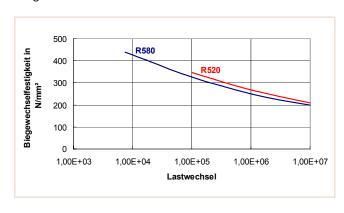
³⁾ Diese Eigenschaften gelten für den ausgehärteten Zustand.

4.3 Hochtemperaturverhalten

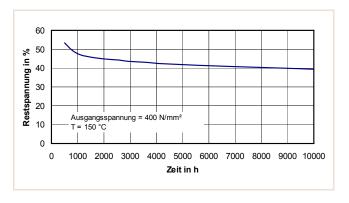

4.3.1 Warmfestigkeit


Hierzu sind Werte der Zugfestigkeit, der 0,2 %-Dehngrenze und der Bruchdehnung einer Legierung mit vergleichbarer Zusammensetzung bekannt [3, 5]. Die Temperaturabhängigkeiten sind im nachstehenden Diagramm dargestellt.

4.3.2 Zeitstandwerte


Es sind für unterschiedliche Versuchstemperaturen Zeitstandfestigkeiten bekannt, die an einer Legierung mit einer vergleichbaren Zusammensetzung (ohne Angaben zur Materialform) im lösungsgeglühten sowie im ausgehärteten Zustand ermittelt wurden [6].

4.4 Dauerschwingfestigkeit

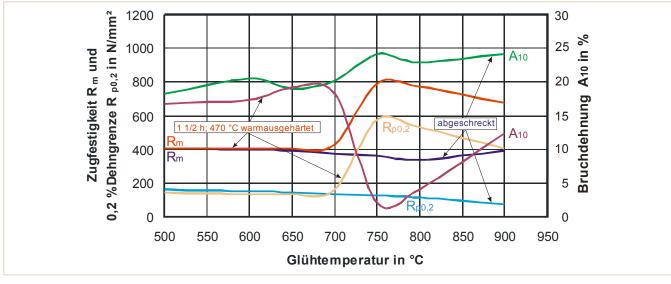

Die für zwei unterschiedliche Zustände bekannten Werte von Bändern aus CuNi1Si [7] sind im folgenden Diagramm dargestellt.

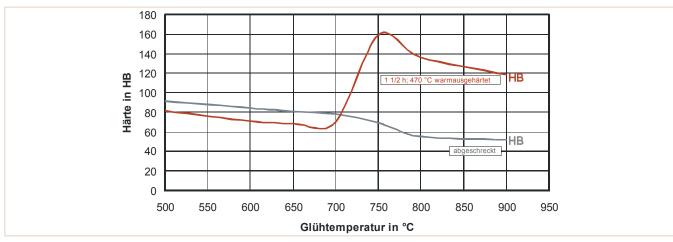
4.5 Federeigenschaften

4.5.1 Relaxationsverhalten

Hierzu wurde bei einer Betriebstemperatur von 150 °C die Restspannung in Abhängigkeit von der Belastungsdauer an ausscheidungsgehärteten (R580) Bandproben (Probenlage parallel zur Walzrichtung) gemessen [7]. Diese Abhängigkeit wird im nachstehenden Diagramm wiedergegeben.

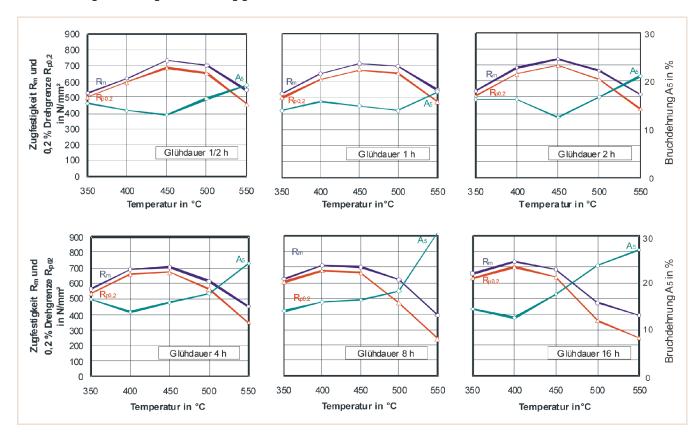
4.5.2 Biegeverhalten


Werte für den bezogenen Biegeradius r/t, die an Bändern mit einer Dicke von t ≤ 0,5mm (Probenbreite = 10 mm) für unterschiedliche Werkstoffzustände ermittelt wurden [7], sind in der nachstehenden Tabelle wiedergegeben.


Zustand		Relativer Biegeradius r/t						
		90°-Biegung		180°-Biegung				
		Biegekante \perp Walzr.	Biegekante Walzr.	Biegekante \perp Walzr.	Biegekante Walzr.			
	R360	0	0	0	0,5			
kalt gewalzt	R410	0	0,5	0,5	1			
Kait gewaizt	R460	0,5	1	1,5	3			
	R520	1	2	2,5	4			
ausscheidungsgehärtet	R580	1	1	3	5			

4.6 Verhalten nach Wärmebehandlung

Von Proben aus einer Legierung vergleichbarer Zusammensetzung sind mechanische Eigenschaften in Abhängigkeit von der Glühtemperatur bekannt, wobei die Proben nach 10 h Glühung bei 750 °C und Ofenabkühlung bei unterschied


lichen Temperaturen ½ h geglüht und in Wasser abgeschreckt bzw. nach dem Abschrecken noch zusätzlich 11/2 h bei 470 °C warmausgehärtet (angelassen) wurden [3, 5]. Die Abhängigkeiten sind in den unteren Diagrammen wiedergegeben.

CuNi1Si

In diesem Rahmen wurde auch der Einfluss von Glühdauer und Temperatur (Glühtemperatur) auf die mechanischen Eigenschaften (bei einer 80%igen Kaltumformung) untersucht. Die Diagramme zeigen die Abhängigkeiten.

5. Relevante Normen

DIN CEN/TS 13388	Kupfer und Kupferlegierungen – Übersicht über die Zusammensetzungen	DIN EN ISO 2624	Kupfer und Kupferlegierungen – Bestimmen der mittleren Korngröße
	und Produkte	DIN EN ISO 6509	Korrosion von Metallen und Legierungen
DIN EN 1655	Kupfer und Kupferlegierungen –		– Bestimmung der Entzinkungsbestän-
	Konformitätserklärungen		digkeit von Kupfer-Zink-Legierungen
DIN EN 1976	Kupfer und Kupferlegierungen –	ISO 1101	Technical drawings – Geometrical
	Gegossene Rohformen aus Kupfer		tolerancing of form, orientation,
DIN EN 10002-1	Metallische Werkstoffe – Zugversuch –		location and run-out – Generalities,
	Teil 1: Prüfverfahren (bei Raumtemperatur)		definitions, symbols, indications and
DIN EN 10003-1	Metallische Werkstoffe – Härteprüfung		drawings
	nach Brinell – Teil 1: Prüfverfahren	ISO 4739	Wrought copper and copper alloy
DIN EN 10204	Metallische Erzeugnisse – Arten von		products – Selection and Preparation
	Prüfbescheinigungen		of specimens and test pieces for
DIN EN ISO 196	Kupfer und Kupfer-Knetlegierungen –		mechanical testing
	Auffinden von Restspannungen –	ISO 6507-1	Metallic materials – Hardness test –
	Quecksilber(I)nitratversuch		Vickers test – Part 1: HV 5 to HV 100
ISO 1811-2	Copper and copper alloys – Selection	ISO 6507-2	Metallic materials – Hardness test – Vickers
	and preparation of samples for		test – Part 2: HV 0,2 to less than HV 5
	chemical analysis – Part 2: Sampling of wrought products and castings	ISO 6957	Copper alloys – Ammonia test for stress corrosion resistance

6. Werkstoffbezeichnungen

Vergleich der Werkstoffbezeichnungen in verschiedenen Ländern (einschließlich ISO) *)

Land	Bezeichnung der Normung	Werkstoffbezeich- nung / -nummer
Europa	EN	CuNi1Si CW109C
USA	ASTM (UNS)	C19010 C19015
Japan	JIS	-
Internationale Normung	ISO	CuNi1Si

Vormalige nationale Bezeichnungen						
Deutschland	DIN	CuNi1,5Si 2.0853				
Frankreich	NF	-				
Großbritannien	BS	-				
Italien	UNI	-				
Schweden	SS	-				
Schweiz	SNV	CuNi1Si				
Spanien	UNE	CuNi1Si				

^{*)} Die Toleranzbereiche der Zusammensetzung der in außereuropäischen Ländern genormten Legierungen sind nicht in allen Fällen gleich mit der Festlegung nach DIN EN.

7. Bearbeitbarkeit [1 - 3, 5 - 7]

7.1 Umformen und Glühen

Umfo	Umformen					
Kaltumformung	gut (lösungsgeglüht) ausreichend (ausscheidungsgeh.)					
Kaltumformgrad zwischen den	75 % (lösungsgeglüht)					
Glühungen	20 % (ausscheidungsgehärtet)					
Warmumformung	gut					
Temperaturbereich	800 bis 900 °C					

Glühen					
Lösungsglühen, Temp-Bereich	750 bis 850 °C				
Weichglühen, Temp-Bereich	650 bis 725 °C				
Aushärten, Temp-Bereich	425 bis 490 °C (vorzugsweise 450 bis 470 °C)				
Entspannungsglühen, Temp-Bereich	-				

Die Kaltumformung erfolgt hauptsächlich im lösungsgeglühten Zustand. Hierzu wird das Material entsprechend geglüht und anschließend in Wasser abgeschreckt. Dieser Zustand kann durch Abschreckung nach einer Warmumformung ebenfalls erreicht werden.

7.2 Spanbarkeit

Zerspanbarkeitsindex: 30

(CuZn39Pb3 = 100)

(Die angegebenen Zahlen sind keine festen Messwerte, sondern stellen relative Einstufungen dar. Angaben anderer Quellen können daher geringfügig nach oben oder unten abweichen.)

Bei der groben Unterteilung der Kupferwerkstoffe hinsichtlich ihrer Spanbarkeit in drei Hauptgruppen wird CuNi1Si der Gruppe III (mäßige bis schwere Spanbarkeit) zugeordnet. Diese Legierung ist im kalt verformten bzw. ausgehärteten Zustand besser spanbar. Werden Teile aus CuNi1Si vor der Bearbeitung umgeformt, so sollte die Aushärtung nach der Umformung und vor der spanenden Bearbeitung vorgenommen werden. Zur Erzielung von guten und glatten Oberflächen wird die Verwendung von Schnellstahl oder Hartmetall empfohlen.

7.3 Verbindungstechniken

Schweißen						
Gasschweißen	nicht empfehlenswert					
Laserschweißen	mittel bis gut					
WIG-Schweißen	mittel bis gut					
MIG-Schweißen	mittel bis gut					
Widerstandsschweißen - Punkt- und Nahtschweißen - Stumpfschweißen	gut gut					

Beim Schweißen sind die Schweißnaht und die von Wärme beeinflussten Zonen in ihren Festigkeiten beeinträchtigt.

Löten		
Weichlöten	gut	
Hartlöten	mittel bis gut	

Durch den Lötvorgang werden die Festigkeitseigenschaften nicht wesentlich beeinflusst, da die Weichlöttemperatur ohnehin unterhalb der Warmaushärtungstemperatur liegt und zum Hartlöten Lote mit möglichst niedriger Arbeitstemperatur bevorzugt werden.

Kleben		
	gut	

7.4 Oberflächenbehandlung

Polieren		
mechanisch	gut	
elektrolytisch	gut	
Galvanisierbarkeit		
	gut	
Eignung für Tauchverzinnung		
	gut	

8. Korrosionsbeständigkeit

CuNi1Si besitzt allgemein eine gute Beständigkeit gegen Atmosphäre, Wasser, Wasserdampf, verschiedene Salzlösungen, viele organische Flüssigkeiten sowie neutrale und alkalische Verbindungen. Unter der Einwirkung der Witterung überzieht sich die Legierung CuNi1Si mit einer dunklen und schützenden Oxidschicht.

Diese Legierung neigt selbst im kalt umgeformten sowie im kalt umgeformten und ausgehärteten Zustand nicht zur Spannungsrisskorrosion, die bei einer Reihe von Werkstoffen unter bestimmten Bedingungen (unter äußeren und/oder inneren Zugspannungen und bei gleichzeitiger Einwirkung gewisser Angriffsmittel, wie z. B. Ammoniak, Amine, Ammoniumsalze) auftreten kann.

Sie ist aber gegen oxidierende Säuren und feuchte Schwefelverbindungen nicht beständig. So kann bei dem Angriff heißer oxidierender Gase stärkere Oxidation auftreten.

9. Anwendungen

- Kontakte und Schalter
- Schmelzsicherungen und Relais
- Leadframes
- Steckverbinder in Automobil und Elektrik, (insbes. für höhere Ströme und Temperaturen)
- Klemmen und Laschen (für elektr. Fahrleitungen, Einspeisungen und Erdungen)
- Verbinder und Hülsen
- hoch beanspruchte Schrauben (bes. korrosions- und witterungsbeständig)
- Schrauben für Drahtseile im elektrischen Oberleitungsbau
- Muttern und Bolzen
- Freileitungsarmaturen
- Wälzlagerkäfige und Federn
- Spritzdüsen (als Substitutionswerkstoff für CuCoBe)
- Lagerbuchsen und Ventilführungsbuchsen
- Führungsschienen und Gleitelemente u.a.

10. Liefernachweis

Technische Lieferbedingungen sind in der betreffenden Produktnorm enthalten. Nachweise von Herstellern und Händlern für Halbzeug aus CuNi1Si können der Quelle [8] entnommen werden.

11. Literatur

Die Angaben dieses Datenblattes sind der bekannten Literatur entnommen bzw. in Anlehnung an diese extrapoliert bzw. angesetzt worden. Einige dieser Stellen sind nachstehend aufgelistet.

- [1] Niedriglegierte Kupferwerkstoffe Eigenschaften, Verarbeitung, Verwendung (DKI-Informationsdruck i.8). Deutsches Kupferinstitut, Düsseldorf, 1977.
- [2] Kupferwerkstoffe in der Elektrotechnik und Elektronik (DKI-Informationsdruck i.010). Deutsches Kupferinstitut, Düsseldorf, 1992.
- [3] K. Dies: Kupfer und Kupferlegierungen in der Technik. Springer-Verlag, Berlin / Heidelberg / New York, 1967.
- [4] Low Temperature Mechanical Properties of Copper and Selected Copper Alloys. National Bureau of Standards Monograph 101, U.S. Department of Commerce, Dec. 1967.
- [5] Niedriglegierte Kupferlegierungen (DKI-Fachbuch). Deutsches Kupferinstitut, Berlin, 1976.
- [6] Copper Data Sheet No. C7, CuNi2Si. Deutsches Kupferinstitut, 1972.
- [7] KME, Rolled Products Bänder für Steckverbinder; Materialdaten + Sonderlegierungen - STOL-76 (C19010). KM Europa Metal, Osnabrück, 2005.
- [8] http://www.kupferinstitut.de

12. Index

Allgemeine Informationen 2	Liquidustemperatur 2
Anwendungen 12	Literatur 12
Aushärten 11	Lösungsglühen 11
Biegeverhalten 9	Löten 11
Chemische Zusammensetzung 2	MIG-Schweißen 11
Dauerschwingfestigkeit 8	Normen 10
Dichte 2	Oberflächenbehandlung 12
Elastizitätsmodul 4	Polieren 12
Entspannungsglühen 11	Relaxationsverhalten 8
Federeigenschaften 8	Schmelztemperatur 2
Festigkeitswerte	Schweißen 11
Drähte 6	Solidustemperatur 2
Platten, Bleche, Bänder, Streifen, Ronden 4	Spanbarkeit 11
Profile, Rechteckstangen 6	Spez. elektrische Leitfähigkeit 3
Rohre 4	Spez. elektrischer Widerstand 3
Schmiedestücke 7	Spez. magnetische Suszeptibilität 4
Stangen 5	Spez. Wärmekapazität 2
Vormaterial für Schmiedestücke 7	Tauchverzinnung 12
Galvanisierbarkeit 12	Temperaturkoeffizient des elektr. Widerstands 3
Gasschweißen 11	Tieftemperaturverhalten 7
Gefüge 4	Verzinnung 12
Hartlöten 11	Wärmebehandlung, Verhalten nach 9
Hochtemperaturverhalten 8	Wärmeleitfähigkeit 2
Kaltumformgrad 11	Warmfestigkeit 8
Kaltumformung 11	Warmumformung 11
Kleben 11	Weichglühen 11
Korrosionsbeständigkeit 12	Weichlöten 11
Kristallstruktur 4	Werkstoffbezeichnungen 11
Längenausdehnungskoeffizient 2	Widerstandsschweißen 11
Laserschweißen 11	WIG-Schweißen 11
Liefernachweis 12	Zeitstandwerte 8